
JOURNAL OF COMPUTATIONAL PHYSICS !&68-78 (1992)

Upwind Relaxation Methods for the Navier-Stokes
Equations Using Inner Iterations

ARTHURC.TAYLOR III

Department of Mechanical Engineering and Mechanics, Old Dominion University, Norfolk, Virginia 23529-0247

WING-FAI NG

Mechanical Engineering Department, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0238

AND

ROBERT W. WALTERS

Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0238

Received November 7, 1988; revised July 22, 1991

An upwind line relaxation algorithm for the Navier-Stokes equations
which employs inner iterations is applied to a supersonic and a sub-
sonic test problem. The purpose of using inner iterations is to accelerate
the convergence to steady-state solutions, thereby reducing the overall
CPU time. A convergence criterion is developed to assist in automating
the inner iterative procedure. The ability of the line inner iterative proce-
dure to mimic the quadratic convergence of the direct solver method is
confirmed in both test problems, but some of the non-quadratic inner
iterative results were more efficient than the quadratic results. In the
supersonic test case, the use of inner iterations was very efficient in
reducing the residual to machine zero. For this test problem, the inner
iteration method required only about 65% of the CPU time which was
required by the most efficient line relaxation method without inner
iterations. In the subsonic test case, poor matrix conditioning forced
the use of under-relaxation in order to obtain convergence of the inner
iterations, resulting in an overall method which was less efficient
than line relaxation methods which employ a more conventional CPU
savings strategy. 0 i 992 Academic PWSS. 1~.

INTRODUCTION

Although recently developed upwind methods for the
Euler and Navier-Stokes equations require two to three
times more computations per time step than do their central
difference counterparts, the continued development of
upwind methods is highly motivated by their naturally dis-
sipative nature. That is, in contrast with central difference
methods, upwind methods have the important advantage of
requiring the addition of no explicit damping terms for
stability and control of oscillations in the solution. For-

tunately, when compared with implicit central difference
schemes, implicit upwind formulations result in coefficient
matrices having a character which is much more nearly
diagonally dominant. Through the exploitation of the
superior conditioning of these coefficient matrices, great
progress has recently been made in the development of
highly efficient upwind relaxation methods [l-S]. The
proven efficiency and overall convergence rates of these
relaxation methods have helped overcome the extra com-
putational time per time step which is involved in upwind
methods.

The purpose of this work is to present an investigation of
the performance of upwind relaxation algorithms for the
Navier-Stokes equations, where an “inner iteration”
strategy is employed at each time step. In the present work,
an inner iteration is simply an iteration on the discrete
“linearized” system of equations, and a “time step,” also
referred to as an “outer iteration,” is in fact an iteration
on the discrete “non-linear” problem. The research is
motivated by a desire to increase the overall computational
efficiency of relaxation procedures for obtaining converged
steady-state solutions to the governing equations of fluid
flow. The fundamental convergence acceleration strategy
which is behind the use of inner iterations is found in the
large error reductions per iteration which can be achieved
with Newton’s root finding method (i.e., direct solver
methods). Briefly stated, the inner iteration strategy
involves the use of well-known, standard relaxation
methods to perform “inner iterations,” in order to more

0021-9991/92 53.00
Copyright 0 I992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

68

UPWIND RELAXATION METHODS FOR NS EQUATIONS 69

accurately solve each linear system of equations which (for
implicit methods) must be solved for the incremental
change in the dependent variables, at every outer iteration.
The result is an accelerated (even quadratic) rate of error
reduction for each outer iteration. The primary question
which is addressed in this research is whether or not the
extra CPU time spent doing inner iterations can be
effectively offset by the accelerated rate of error reduction
of the outer iterations, to produce a more efficient overall
algorithm for the Navier-Stokes equations.

A general presentation on the theory of Newtoniterative
methods, including the use of inner iterations, is given in
Ref. [9], including two applications to the solution of non-
linear partial differential equations (not the equations of
fluid flow). In Refs. [S-7], the use of inner iterations for the
full governing equations of fluid flow is suggested and
discussed, but implementation and testing is not reported
in these references. The use of inner iterations is applied to
the full (non-linear) potential equation of fluid flow in
Ref. [lo], and the use of preconditioning matrices is
included to accelerate the convergence of the inner
iterations.

In Ref. [111, the use of inner iterations is combined with
a direct solver method to solve the thin-layer Navier-Stokes
equations for laminar flow over an airfoil. In the work of
Ref. [111, the focus of the work is the use of direct solver
methods, where a huge computer storage capacity is
required, even in two dimensions. Inner iterations are
employed in Ref. [111 only to avoid total neglect of a small
number of implicit terms which lie at extreme distances
outside the otherwise relatively small bandwidth of the
full implicit coefficient matrix. Direct LU factorization is
performed only on the main banded part of the matrix. In
contrast with the work of Ref. [111, the present work
focuses on inner iteration schemes and specifically on those
methods which completely avoid the huge storage
requirements of direct solver based methods.

With respect to the improved efficiency of relaxation
methods for the equations of fluid flow, work has been done
using multigrid strategies [12-141. In contrast, however,
the convergence acceleration strategy of the present work
(i.e., inner iterations) is very different from a multigrid
method. In the present work, convergence acceleration is to
be achieved by taking advantage (at least in part) of the
large error reductions per iteration which are associated
with Newton’s root finding method. Where multigrid proce-
dures can be expected to accelerate convergence particularly
well during the initial transient phase of a solution, con-
vergence acceleration strategies which are based on New-

efficient overall algorithm. The combined use of multigrid
with convergence acceleration based on Newton’s method is
discussed in more detail in Ref. [151.

After a summary of the governing equations and an over-
view of the spatial disdetization used, the relaxation algo-
rithms including the use of inner iterations are explained.
Following a brief discussion, a convergence criterion for the
inner iterations is described. Relaxation methods with and
without the use of these inner iterations are applied to two
test problems, and the results are discussed and compared.
The final section is a summary of the work with the conclu-
sions.

GOVERNING EQUATIONS

In the present work, the governing equations are the
2D, unsteady thin-layer, laminar Navier-Stokes equations,
given as

where

IQ> = CP, PK PC Ed’;

{Q} is a vector of conserved variables, p is density, u and v
are velocity components in Cartesian coordinates, and e, is
the total energy per unit mass, and

i;(Q)=FF(Q)+?G(Q).

A transformation to generalized coordinates (l, v) from
Cartesian coordinates (x, y) has been made in Eq. (l),
where 5,, tl,, r~,, qY are metric terms, and J is the determi-
nant of the Jacobian matrix of this transformation:

k’(Q) = CPU, pu2 + f’, PW (pe, + WIT

G(Q) = CPU, PW pv2 + P, (pe, + p)~lT.

ton’s method are expected to produce gains in efficiency
particularly well only after the transient solution is suf- P, the pressure, is evaluated using the ideal gas law,

ficiently close to the root. These two fundamentally different
convergence acceleration philosophies do not necessarily
compete, but can be combined to work together for a more

P=(Y-l)[m-p(v)],

70 TAYLOR, NC, AND WALTERS

and y is the specific heat ratio, taken to be 1.4,

6(Q) = & Cg,,, go,, gvjt g,J=, (> L

+ a3(uu), + pr(F: 1) (a2)q’

and

p is the molecular viscosity, Stokes’ hypothesis for the bulk
viscosity (;1= - 2~/3) has been used, a is the speed of sound,
Pr is the Prandtl number, and Re, is the Reynolds number.

Nondimensionalization of Eq. (1) is with respect to pco
and U,, the freestream density and velocity, respectively.
The physical coordinates have been nondimensionalized by
a reference length, L. The viscosity, h, has been nondimen-
sionalized by pm, the molecular viscosity of the freestream.
The nondimensional viscosity can be computed using
Sutherland’s law, and a reference temperature, T,, the
static temperature of the freestream.

SPATIAL DISCRETIZATION

Computationally, the governing equations were solved in
integral conservation law form using a cell-centered finite
volume formulation. Only an overview of the method is
presented here, with details found in Refs. [l-5]. In this
approach, metric terms are evaluated geometrically as the
direction cosines of cell faces, and l/J is the area (volume in
3D) of the cells. Flux derivatives are evaluated as a balance
of fluxes across cell faces. As an example, this balance of
fluxes for the jkth cell is given by Eq. (3) for an inviscid,
steady-state solution, and for d[= dry = 1,

Fj+ I/2 - Fj- l/2 + G’k + l/2 - dk ~ l/2 = O, (3)

where subscripts j, k refer to the 5, YI directions, respectively,
and subscripts j f 1 refer to the r = constant cell interfaces of
the jkth cell, subscripts k f $ refer to the q = constant cell
interfaces of the jkth cell.

The inviscid flux terms are evaluated using the upwind
method of Van Leer [163, although the relaxation methods
to be discussed herein could be used with other upwind
methods as well. With Van Leer’s method, the inviscid
fluxes are split into two parts according to the sign (+ or
-) of the eigenvalues of the Jacobian matrices of the respec-
tive split fluxes. For example, the flux, F,, ,/,(Q,+ ,,2) is
divided as

F;, ,,2(Q ,+ ~2) = ++ ,,2@< ,,2) + p,-+ ,,,(Q:, ,,2)>

where [ap ‘/aQ] has only non-negative real eigenvalues
and [&/aQ] has only non-positive real eigenvalues.

Upwind evaluation of the split fluxes at the cell interfaces
is accomplished through upwind interpolation of the inde-
pendent vector of conserved variables to the cell interfaces
from the approximate cell centers, using the interpolating
polynomials,

P,;,,2=Qj+~[(l-~)V+(l+~)dl Qj

Q ~+,,2=Qj+~-%[(l+~)V+(l--K)dl Qj+l;

d is the forward difference operator, V is the backward
difference operator, and 4 and K are parameters which
control the accuracy of the spatial discretization, such that
when

4 = 0: first-order upwind interpolation

4 = 1.0: higher-order interpolation, controlled by K,
where K may take on values in the range:
-l.O<rc< +l.O.

Special cases are:

K = - 1 .O, fully upwind differencing

K = l/3, upwind biased third-order accurate

K = + 1.0, standard central difference scheme.

The viscous terms are handled using the finite volume
equivalent of second-order accurate central differences.
Details on the spatial discretization of the viscous terms are
found in Ref. [11.

RELAXATION ALGORITHMS

Discretization of Eq. (1) in space (using the methods out-
lined in the previous section) and also in time using the
Euler implicit method results in

$$= (R”+‘(Q)},

UPWIND RELAXATION METHODS FOR NS EQUATIONS 71

where:

PQ) = (QY+’ - IQ)? (5)

superscript n refers to the current or known time level (or
outer iteration). {R(Q)} is called the residual, everywhere
equal to zero for a steady-state solution.

Linearization in time about the known (nth) time level
results in

(& CII -[y]“} {AQ} = W(Q)l, (6)

where [I] is the identity matrix, and [aR(Q)/aQ]” is con-
structed of (4 x 4) flux Jacobian matrices. When a higher
order upwind spatial discretization for {R(Q)} is used, with
a consistent spatial discretization of the left-hand side of
Eq. (6), a vector equation may be written for each cell in the
domain, given by

C-W {AQkp 1) + CBI” {dQ> + Ccl” b’Qk+ I >

+ CDI” {dQk-*} + [El” {bQ,+,) + CFI” {dQjp 1)

+ Ccl” bfQ,+ I > + [RI” INA

+ CKI” {dQj+z}= {R”(Q)), (7)

where [A] through [I] are linear combinations of the flux
Jacobian matrices, and [B] contains the time term. In the
above, and throughout the remainder of this paper,
whenever a subscript is simply “j” or “k” it is dropped for
notational convenience. Figure 1 shows a typical “difference
molecule,” at the jk th cell.

When these vector equations (given by Eq. (7)) for each
cell are assembled into a matrix, including consistently
linearized implicit boundary conditions, the result is a
banded, linear (in dQ) system of equations, written com-
pactly as Eq. (8), below:

C VQII” PQl = W’(Q)). (8)

Streomwise+ian

FIG. 1.

j-2 J-I j j+l j+2

Typical “difference molecule” representation of Eq. (7).

In principle, Eq. (8) may be repeatedly inverted directly
using a banded direct solver which takes advantage in terms
of both computation and storage of the fact that outside the
bandwidth all of the elements are zero, as the solution is
advanced in time to steady state. However, direct inversion
of (8) can often be impractical, even when using modern
supercomputers, because of excessively large storage
requirements in performing the reduction of the matrix
[VI”, particularly in 3D. Furthermore, when the storage
restriction is not a limiting factor for a given problem, solu-
tion by repeated direct inversion of Eq. (8) is not necessarily
the most efficient solution procedure with respect to overall
CPU time [15, 171. However, despite these penalties, it is
noted that one significant advantage of the direct solver
approach over the conventional iterative methods which are
in widespread use is that of enhanced robustness. In
principle, for reasons which will become apparent, this
enhanced robustness can also be achieved with relaxation
methods which include the use of inner iterations (without
incurring some of the aforementioned penalties which are
associated with the direct solver approach).

It is noted by inspection of Eq. (6), that for very large
time steps, Eq. (8) (together with Eq. (5)) is exactly the well-
known Newton’s root finding method for non-linear equa-
tions, provided that the left-hand side of Eq. (8) is a
perfectly consistent Newton linearization. Under these
conditions, after the large initial transient is overcome, it
can be shown that repeated direct inversion of (8) will
converge quadratically to the solution of {R(Q)} = 0 [IS].
The remarkably rapid convergence properties of Newton’s
method will be a contributing factor in the overall computa-
tional performance of the inner iteration relaxation methods
of the present work.

One of the oldest and most widely used practices for
advancing the solution of Eq. (8) in time is the approximate
factorization of the system such that each time step involves
alternating direction sweeps across the domain, and only
requires the solution of uncoupled block tridiagonal
systems as the sweeping proceeds [191 (or requires the solu-
tion of uncoupled block pentadiagonal systems, if a higher
order accurate upwind spatial discretization of the implicit
terms is selected, although this typically is not done when
using approximate factorization). Alternatively, the solu-
tion to Eq. (8) may be advanced by standard relaxation
strategies, which are developed as follows:

Let [VI” of Eq. (8) be divided conveniently into two
parts:

[V]” = [M]” + [N]“. (9)

A general relaxation algorithm is then written as

Chfl” {dQi> = {R”(Q)} - CNI” {dQ’-I}. (10)

72 TAYLOR, NC, AND WALTERS

Superscript i, i= 1, 2, 3, 4, is the inner iteration index
and {de”} is taken to be zero. If inner iterations are not
performed, i is simply one.

Many choices of standard relaxation algorithms are
possible selections for use in performing the inner iterations,
represented by Eq. (10). In addition, over and/or under-
relaxation may be incorporated into these inner iteration
strategies. The relaxation algorithm chosen for application
in the present work is alternating forward and backward
vertical line Gauss-Seidel (VLGS) iteration in 2D. For both
the forward and backward sweeps, coefficients [A] through
[E] of Eq. (7) are included in the [M] matrix of Eq. (9).
For the forward sweep, coefficients [F] and [i7] are also
included in [M], with coefficients [G] and [I] included in
matrix [N]. On the backward sweep, [G] and [I] are part
of [M], where [F] and [R] are included in [N].
Compactly written, the forward sweep is given by (11)
below, where JEND is the total number of vertical columns
of cells in the domain:

CA, 4 C, D, El; {de;}

= {Ri”} - [Fly {LW-~} - [al; {@-2}

- [C]; {AQ;;;} - [I]; {AQ;;;}

j = 1, 2, 3, JEND. (11)

The backward sweep is
- - - - -

CA, B, C, D, El; {dQ;>
= {Ri”} - [F]; {dQj:;> - [R]; (AQ;:;}

- Ccl; @Q;+,> - [II; hfQ;+,>
j= JEND, 3, 2, 1. (12)

Note that the forward and backward sweeps require an
LU factorization of a block pentadiagonal matrix, [A, B, C,
D, Elj, one such matrix for each vertical column of cells in
the domain. Since the coefficients are constant at a fixed n,
the line LU factorizations may be repeatedly used for all
inner iterations.

Storage requirement for the complete LU factorizations
of the block pentadiagonal matrices is large but quite
manageable in 2D on modern supercomputers, even for
large meshes. As an important advantage over the direct
method, it is noted that the storage requirement for this
iterative algorithm (Eqs. (11) and (12)) is smaller than that
required by a banded direct solver or a sparse matrix solver.

When the LU factorization of the block pentadiagonal
matrices is stored over the entire field, the factorization
procedure is vectorizable over the number of lines in the
sweep direction. The back substitution procedure is not
vectorizable over these lines because of its recursive nature,
which is seen by inspection of Eqs. (11) and (12). Of course,

on any given line, the LU decomposition and both the
forward and backward substitution steps could be vec-
torized over the bandwidth, but in general this is not done.
Having complete stored LU factorizations, after the first
iteration, subsequent forward and/or backward inner itera-
tion sweeps are purely repetitive back substitution proce-
dures. Recomputation of {R”(Q)} (which includes complete
fluxes and explicit boundary conditions) is not necessary,
nor is recomputation of any implicit terms. All that is
required on each inner iteration is assembly of the known
terms on the right-hand side of Eq(s). (11) and/or (12) and
back substitution for {de’}, using the stored LU factoriza-
tions. Update of the solution (Q>“” using Eq. (5) is done
only after the inner iterations are completed for a given
outer iteration level.

The previously outlined line inner iteration strategy is
very similar (with respect to programming considerations)
to a more conventional CPU savings strategy for implicit
algorithms which does not use inner iterations, but where
the line LU factorizations are stored over the entire domain
and reused for a specified number of (outer) iterations.
However, unlike when using inner iterations, in this method
the solution for {Q}‘+’ is updated using Eq. (5), and the
complete residual must be recomputed on each iteration,
including iterations which employ reuse of the LU factoriza-
tions. More detail on the use and effectiveness of this proce-
dure is documented [20]. Therefore, existing codes which
currently employ this conventional CPU savings method
could easily be modified to include the option of performing
the line inner iteration strategy of the present work.

DISCUSSION

The overall goal of the inner iteration strategy is to
produce a solution procedure having improved convergence
properties in terms of reductions in total CPU time.
Convergence or divergence of the inner iteration relaxation
strategy at each outer iteration will depend on the condi-
tioning of the [I’]” matrix of Eq. (8). For a first-order spa-
tial discretization, [I’]” is diagonally dominant, regardless
of the time step size, and thus convergence of the inner itera-
tions of Eqs. (11) and (12) is unconditionally assured at
each outer iteration. For higher-order spatial discretiza-
tions, diagonal dominance of [VI” is lost as the time step is
increased [11. Therefore, in the higher-order case, for
arbitrarily large time steps, convergence of the inner itera-
tions of Eqs. (11) and (12) cannot be guaranteed. To
achieve convergence, the use of a small time step and/or
under-relaxation may be required.

INNER ITERATION CONVERGENCE CRITERION

In the present work, a convergence criterion for the inner
iterations has been developed and applied in the two test

UPWIND RELAXATION METHODS FOR NS EQUATIONS 13

problems which are to be presented. While this convergence
criterion is very simple and easy to apply, it does not com-
pletely eliminate all of the “guess work” and problem
dependency which is found in its use. The convergence
criterion begins by defining

{E;} = lnAQi} - {“AQ”}, (13)

where (&;I) is an error term at the nth outer iteration,
{ “AQi} is an iterative solution to Eq. (10) at the n th outer
iteration, after the ith inner iteration, and (“AQ”} is the
solution to Eq. (8) by direct inversion at the nth outer
iteration, where superscript D is for emphasis that it is the
solution that would be obtained by a direct method.

Substituting Eq. (13) into Eq. (8) and rearranging yields

{nAQi} = [VP’]” {R”} + {E;;). (14)

From (14) note that { s;f } must be made “small” compared
to [V-i]” (R”}, for {“AQj} to approach the direct solu-
tion of Eq. (8) given by { “AQ”). Therefore, in terms of
Euclidian norms, for convergence, it is required that

ll{~;;)ll~ IIcv-‘Y {WII. (15)

Clearly it is impossible to evaluate either the right- or left-
hand sides of (15) without first solving Eq. (8) directly.
Thus, instead of II { sl;} 11, the left-hand side of inequality (15)
is replaced by II (~7) 11, where

{E;} = {nAQ’} - {“AQ’-‘}. (16)

The justification is found in that if II {s’f } II (which is easily
evaluated) is made progressively smaller, then II {E:} II must
also be made smaller, and the inequality (15) will be
satisfied. The convergence criterion can now be written:

Now let

liiE?}II 6 ll[v-‘l” {R”)It. (17)

cn= lW’QD>Il.
ll{R”)II ’ (18)

then, using Eqs. (8) and (18), Il[V-‘1” {R”}II =
C” /I {R”)II, and (17) becomes

lI~~‘IIlI +c” II(R” (19)

As the steady state is approached, C” approaches a
constant; i.e.,

c”-’ N C”,

which by substitution into (19) yields

II(~ &Cnp’ II(R” (20)

All the terms of (20) are now easily evaluated at each outer
(nth) iteration. The final form of (20) used in the calcula-
tions is

log,, ll(~;}/I dhz,, c”p’+log,, ll{R’%I -TOL (21)

where TOL is a user-specified tolerance (in orders of
magnitude) that the left-hand side of (20) is to be reduced,
compared to the right-hand side. Appropriate values of
TOL were found for the test problems by numerical
experimentation, to be shown subsequently.

COMPUTATIONAL RESULTS

All calculations to be presented were performed on an
IBM 3090 vector processing computer. The inner iteration
strategy was applied to two test problems, including both a
supersonic and a subsonic test case. For each of these
problems, the following procedures were applied:

1. As a preliminary consistency check, a true Newton
method was applied to the problem by repeated direct LU
decomposition of Eq. (8), (using a vectorized banded
solver) with the time step set to lo’*. Convergence of the
problem in all cases was taken to be when the L, norm of
the residual was reduced to machine zero (about 13 orders-
of-magnitude in double precision). As expected, once within
the range of “attraction to the root,” the direct solver
converged the solution quadratically.

2. For consistency, it was confirmed that the inner
iteration strategy would in fact duplicate the quadratic
convergence of the direct solver.

3. The initial condition which was used in all test cases
was the specification of freestream conditions throughout
the flowtield.

4. Before either the inner iteration or the direct solver
method was applied to the problems, the L, norm of the
residual was reduced two orders of magnitude using alter-
nating forward/backward VLGS without inner iterations.
This initial residual reduction was accomplished using a
starting constant Courant number for each cell of 1.0, and
the Courant number was then increased in inverse propor-
tion to the decrease in the L, norm of the residual. This
initial residual reduction was performed because the use of
VLGS with inner iterations was found to be inefficient com-
pared to VLGS without inner iterations at this stage. That
is, although the inner iterations converged rapidly at this
stage, the net result was no appreciable increase in the rate
of error reduction after each outer iteration, regardless of

74 TAYLOR, NG, AND WALTERS

how many inner iterations were performed. Consequently,
the most computationally efficient procedure was found to
be the use of a single VLGS relaxation pass for each outer
iteration during this initial transient phase of the solution.

5. For each of the two test problems, the inner iteration
strategy was applied using the inner iteration convergence
criterion of inequality (21). For each problem, four values of
TOL (TOL = 2,3,4, and 5) from (21) were tested and com-
pared. Finally, the best of these results using inner iterations
were compared to standard forward/backward VLGS
without inner iterations.

6. Spatial accuracy for the two test problems was
chosen and applied as follows:

a. Inviscid terms, streamwise direction, were second-
order accurate, fully upwind (rc = - 1.0).

b. Inviscid terms, normal direction, were third-order
accurate, upwind biased (K = l/3).

c. Viscous thin-layer terms were second-order
accurate, central “differences.”

7. The molecular viscosity of the two (laminar) test
problems was set to be everywhere a constant, equal to the
viscosity of the freestream.

TEST PROBLEM ONE

The first test problem was a M, = 2.0 shock interaction
with a laminar boundary layer on a flat plate. On the left
(inflow) boundary, all variables were specified and held
fixed, where the shock jump conditions based on inviscid
theory were used to generate the shock. On the top
boundary, all variables were held fixed at the value of the
jump conditions, which is an over-specification of boundary
conditions there. On the lower boundary, flow symmetry
was applied before the plate, and adiabatic, no-slip
conditions were applied on the plate. All variables were
extrapolated on the right (outflow) boundary. More details
on this problem are found in Refs [1, 21, 223.

Figure 2a shows the pressure contours, and Fig. 2b shows
the skin friction (indicating flow separation) for computa-
tional results on a 61 x 113 grid. Of course, points were
clustered near the lower boundary to assist in resolving
viscous effects near the wall. As expected, these results are in
close agreement with those of Ref. [11.

For testing of the relaxation algorithms, the remainder of
the results which are to be presented for this problem were
performed on a coarser, 31 x 57 point grid (with grid
stretching near the wall). In addition, when performing the
inner iterations, the time step was set to lo’*, and only the
forward (left to right) sweep given by Eq. (11) was used. For
the inner iterations on this problem, this was found to be
slightly more efficient than the use of alternating
forward/backward sweeps. Finally, for the inner iterations,
successive line over-relaxation (SLOR) was used with a

b 4x1 o-3

/ 0

c 3 0
c

0
0

Skin 2 - 000Oa
friction +%

Cf ‘-
‘3
0

0 0 0
0

0
“em a

0 0
cc -1 I I I I 1

0.0 0.4 0.8 1.2 1.6 2.0

x/L

FIG. 2. (a) Test problem l-pressure contours for shockjlaminar
boundary-layer interaction (61 x 113 grid). (b) Test problem l-skin
friction for shock/laminar boundary-layer interaction (61 x 113 grid).

relaxation parameter omega (0) of 1.15. The use of SLOR
was found to slightly improve the overall convergence rate
of the inner iterations.

Figure 3 is a plot of the L, norm of the residual vs. the
outer iteration index, where the results from application of
a direct solver are compared to the inner iteration strategy.
The horizontal lines in the plot represent the residual level

I.::,“_,,
6

-16
I I I I I I

0 1 2 3 4 5 6

OUTER ITERATION NO.

FIG. 3. Test problem l-quadratic convergence of direct solver and
inner iteration methods.

UPWIND RELAXATION METHODS FOR NS EQUATIONS 75

which was obtained after each iteration using the direct
solver. After the second Newton iteration, convergence is
quadratic. Included in Fig. 3 next to each point is the
number of inner iterations which were used for each outer
iteration, in order to agree with the direct solver. At each
outer iteration, this number is roughly a minimum, found
by trial and error.

Figure 3 in no way illustrates the computational
efficiency of the relaxation method compared with that of
the direct solver, because that is not its intended purpose. In
short, however, it is noted that on all test cases of the
present research, the relaxation methods were seen to be
superior to the direct solver in terms of both overall CPU
time as well as computer storage requirements. Explicit
comparison of the computational efficiency of the direct
solver method with that of the conventional VLGS algo-
rithm for the Navier-Stokes equations is found in Ref. [15].

Figure 4a is a plot of the L, norm of the residual vs. CPU
time using the inner iteration strategy, and the convergence
criterion of inequality (21). Values of TOL (from inequality
(21)) include 2,3,4, and 5. The total CPU time includes the
CPU time required for the initial two orders-of-magnitude
reduction in the residual, which required 37 VLGS sweeps
(without inner iterations) across the domain. In terms of

a Oh

&. -4-

5

d
> -a-

2

2
z -12 -

:
5

TOL=Z 3 4

b 100

0 50 100

CPU SECONDS

01 I I I I I I

0 2 4 6 a 10 12

OUTER ITERATION NO.

FIG. 4. (a) Test problem l-inner iteration method using four values
ofTOL (from inequality (21)). (b) Test problem l-inner iteration method
using four values of TOL (from inequality (21)).

overall CPU time to convergence at machine zero, the most
efficient case was obtained with TOL = 2. As TOL was
increased progressively to 5, each case was progressively less
efficient, although not markedly so. It is noted that for
TOL=4, convergence of the outer iterations is almost
quadratic, and for TOL = 5, quadratic convergence is
obtained. Although it is not explicitly seen in the figure, the
total CPU time of the quadratically converging inner itera-
tion case of Fig. 3 (where the number of inner iterations for
quadratic convergence is minimized by trial and error) was
about 93.2 s. This is a few seconds longer than for the non-
quadratic case of TOL = 2 in Fig. 4a. It is therefore implied
that quadratic convergence of the outer iterations is not
necessarily an important requirement in developing the
most efficient inner iterative procedure.

Figure 4b is a plot of number of inner iterations used vs.
outer iteration number for each of the four cases presented
in Fig. 4a. Of course, as TOL is increased, the number of
inner iterations required for convergence at each outer
iteration is markedly increased, but the number of outer
iterations to machine zero is markedly decreased.

Figure 5 is a comparison of three relaxation methods,
where the L, norm of the residual is plotted vs. total CPU
time. One of the three cases represents the inner iteration
procedure using TOL = 2, also shown in Fig. 4a. The
remaining two cases in Fig. 5 represent two cases of
forward/backward VLGS without inner iterations. In both
of these two cases, the Courant number was started at a
constant value for each cell of 1.0 and was increased without
bound as the L, norm of the residual decreased, as pre-
viously discussed. These two VLGS cases without inner
iterations had only one difference. One of these cases
employed a CPU saving strategy where inner iterations are
not performed, but where the line LU factorizations are
reused for a specified number of outer iterations. For the
results shown in Fig. 5, when employing this conventional
CPU saving method, 25 reuses of each set of new line LU

0-C
\

+ VLGS whner iterations

-’ -4 -
- VLGS w/o inner iterations

2

d
> -8-

2

2

z-t, -

s

25 reuses no reuses

-16 I of LU , OfLU,

0 50 100 150 200

CPU SECONDS

250 300

FIG. 5. Test problem l-VLGS with inner iterations compared to
VLGS without inner iterations.

76 TAYLOR NG, AND WALTERS

factorizations was specified, which was found by numerical
experimentation to be near optimal for this problem.

From Fig. 5, it is shown that both convergence accelera-
tion methods which were tested can improve standard
VLGS. The CPU time required to drive the residual to
machine zero by using the inner iteration strategy is about
65 % of the CPU time required by the conventional reuse of
LU factorizations method, when the CPU time for the
initial two orders-of-magnitude residual reduction is not
included.

TEST PROBLEM TWO

The second test problem was a M, = 0.5 laminar flat
plate boundary layer problem, Re, = l.EO5, where L is the
length of the plate. On the left (inflow) boundary, entropy
and total enthalpy were held fixed, the u component of
velocity was fixed to be zero, and the u component of
velocity was extrapolated. On the top and right (outflow)
boundaries, density and both components of velocity were
extrapolated, and the pressure was held fixed at the
freestream value. On the lower boundary, flow symmetry
was applied before the plate, and adiabatic no-slip condi-
tions were applied on the plate.

Calculations were performed on a 3 1 x 41 point grid, with
clustering near the wall. Figure 6 shows results of the
calculations at X/L locations of l/3, 2/3, and 1.0, which are
compared with the Blasius similarity solution, taken from
Ref. [23]. Comparison of the computed results with the
Blasius solution is excellent.

As in the first test problem, when performing inner itera-
tions, the time step was set to 10”. In contrast with the first
test problem, where only the forward sweep was used, when
performing inner iterations for the second test case, alter-
nating forward/backward relaxation sweeps (Eqs. (11) and
(12)) across the domain were employed.

5

I

. xfL=1/3

. x/L = z/3

. x/L=10

4
- BLASIUS SOLUTION (from ref 23)

z-

0.0 0.2 0.4 0.6 0.6 IO

U/UE

FIG. 6. Test problem Z+omputed results at three X/L stations
compared with the Blasius solution.

When using a very large time step, the penalty in loss of
diagonal dominance for this subsonic test problem was so
great that the inner iteration relaxation procedure became
divergent, during each outer iteration. The use of successive
line under-relaxation was required at all times to force
the divergent scheme to become convergent. A relaxation
parameter, omega (w) of 0.8 was used for all results to be
presented. This value was found by numerical experimenta-
tion to be about the maximum allowable value for con-
vergence, and at the same time appeared to be the optimum
value in terms of overall computational efficiency of the
inner iterations.

Lack of diagonal dominance and the forced use of under-
relaxation in the second test case caused an increase in the
number of inner iterations which were necessary to produce
convergence to a required tolerance. Figure 7 is a con-
sistency check (similar to Fig. 3) demonstrating the ability
of the inner iterative scheme to produce error reductions at
each outer iteration which agree with the quadratically
converging results from the use of a direct solver.

Figures 8a and 8b for the second test problem were
produced using identical procedures to those which were
used and discussed for Figs. 4a and 4b (respectively) of the
first test problem. Again the initial residual was reduced two
orders-of-magnitude before inner iterations were performed.
In this case, 50 standard VLGS sweeps were required for
this initial residual reduction.

In Figure 8a, the most efficient test case was again found
to be when using a value of TOL = 2, with decreasing over-
all efficiency noted with increasing values of TOL. However,
in the second test case, increases in the value of TOL
resulted in significantly greater decreases in overall com-
putational efficiency when compared with the results of the
supersonic test problem. As a final observation, although it
is not explicitly seen in the figure, it is noted that the total
CPU time for the quadratically converging inner iteration
case of Fig. 7 was about 295.2 s. This is significantly greater
than for some of the non-quadratic cases of Fig. 8a. Thus,

O- I = no. of inner iterations

(1, i =200
n = no. of outer iterations

ll=l

J
2

-4-

2 3

i
’ -a-

a

2 $ 650 4 -12-

a: 275 5

-16 I 1 I I I I I

0 1 2 3 4 5 6

OUTER ITERATION NO.

FIG. 7. Test problem 2+uadratic convergence of direct solver and
inner iteration methods.

UPWIND RELAXATION METHODS FOR NS EQUATIONS 77

a OK

TOL=2 3 4 5

-16 1 I / I I I

0 50 100 150 200 250 300

CPU SECONDS

b
-s 4o r r/\TOL=5

x I /

g 30 -
0
F

2
w 20 -
t

::

5 10 -
-

P

2

01 I I I I I

0 4 a 12 16 20 24

OUTER ITERATION NO

FIG. 8. (a) Test problem 2-inner iteration method using four values
ofTOL (from inequality (21)). (b) Test problem 2-inner iteration method
using four values of TOL (from inequality (21)).

this problem shows that in applying an inner iterative
method, obtaining quadratic convergence for the outer
iterations is not essential and can even be less efficient than
a non-quadratic procedure.

Figure 9 of the second test problem is identical in function
to Fig. 5 of the first test case. For the cases involving VLGS
without inner iterations, the Courant number was started at
one and increased to a maximum Courant number of 250,

25 reuses no reuses
of LU of LU

-16 I I

0 50 100 150 200 250 300

CPU SECONDS

FIG. 9. Test problem 2-VLGS with inner iterations compared to
VLGS without inner iterations.

as the residual decreased. It is clear that only a very
moderate gain in overall computational efficiency is
achieved through using the line inner iteration method
when compared to standard VLGS. However, in the second
test case, if the conventional reuse of the line LU decom-
positions is used, a greater increase in overall efliciency over
the standard VLGS procedure is realized compared to that
increase in overall efficiency which is obtained using the
inner iteration method.

SUMMARY AND CONCLUSIONS

An upwind line relaxation method using inner iterations
for the Navier-Stokes equations has been tested on two
classic test problems. With the inner iteration procedure,
the large memory requirements associated with a direct
solver method are avoided. The ability of the inner iteration
method to mimic the quadratic convergence of Newton’s
method has been confirmed. It has been shown that
obtaining maximum computational efficiency from the
inner iteration method does not depend on obtaining
quadratic convergence of the outer iterations.

A convergence criterion for the inner iterations has been
developed and tested. While this criterion is not indepen-
dent of the code user and the problem being solved, the
method is easy to program and apply. For the two test
problems of the present work, this convergence criterion
was found to be effective in helping to automate the
convergence criterion requirements of the inner iterative
procedure.

In all test cases, the use of inner iterations during initial
transients was found to be inefficient. This is attributed to
the fact that Newton’s method does not yield large reduc-
tions in the residual until the transient solution is brought
sufficiently close to the root. Alternative convergence
acceleration methods, such as multigrid and mesh
sequencing, may be preferable during this phase of the
solution procedure. Thereafter, a convergence acceleration
algorithm based on Newton’s method (such as the algo-
rithm of the present work) is effective in efficiently achieving
large error reductions to machine zero.

For the supersonic test case, the inner iteration procedure
was found to be effective in reducing the overall computa-
tional time to convergence to machine zero when compared
to all other algorithms examined. In the subsonic test case,
the inner relaxation procedure became divergent. This was
caused by poor matrix conditioning resulting in a loss of
diagonal dominance when using an essentially infinite time

step. Successive line under-relaxation was required to
achieve convergence of the inner iterations for this problem.
However, this resulted in a slow convergence rate for the
inner iterations. Consequently, for the subsonic test case,

the inner iteration method was found to be less efficient
when compared to the conventional reuse line LU factoriza-

78 TAYLOR NG, AND WALTERS

tions method in accelerating the convergence rate to 9. A. H. Sherman, SIAM J. Numer. Anal. 15, 775 (1978).

machine zero of the standard VLGS algorithm. 10. V. S. Wong, AIAA J. 23, 515 (1985).

11. V. Venkatakrishnan, AIAA J. 27, 885 (1989).

ACKNOWLEDGMENTS 12. D. C. Jespersen, AIAA Paper 88-0124, Reno, NV, 1988 (unpublished).

The first author was supported by the Graduate Student Researchers
Program through NASA Lewis Research Center, Dr. Francis J.
Montegani, Program Administrator. The authors would like to express
their appreciation to Dr. Louis A. Povinelli for his support of this research.

REFERENCES

1. J. L. Thomas and R. W. Walters, AIAA J. 25, 527 (1987).

2. M. Napolitano and R. W. Waiters, AIAA J. 24, 770 (1986).

3. R. W. Newsome, R. W. Walters, and J. L. Thomas, AIAA J. 27, 1165
(1989).

4. R. W. Walters and D. L. Dwoyer, AIAA Paper 85-1529, Cincinnati,
OH, 1985 (unpublished).

5. J. L. Thomas, B. Van Leer, and R. W. Walters, AIAA J. 28,973 (1990).

6. M. S. Liou, NASA TM87329, NASA Lewis Research Center,
Cleveland, OH (unpublished).

7. S. R. Chakravarthy, AIAA Paper 84-0165, Reno, NV, 1984
(unpublished).

8. R. W. Walters and D. L. Dwoyer, NASA Technical Paper 2523, NASA
Langley Research Center, Hampton, VA (unpublished).

13. P. W. Hemker and S. P. Spekreijse, Appl. Numer. Math. 2, 475 (1986).

14. W. A. Mulder, J. Comput. Phys. 60, 235 (1985).

15. D. W. Riggins, R. W. Walters, and D. Pelletier, AIAA Paper 88-0229,
Reno, NV, 1988 (unpublished).

16. B. Van Leer, Lecture Notes in Physics, Vol. 170, (Springer-Verlag,
New York/Berlin, 1982) p. 507.

17. M. Hafez, S. Palaniswamy, and P. Mariani, AIAA Paper 88-0226,
Reno, NV, 1988 (unpublished).

18. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables (Academic Press, New York, 1970),
p. 312.

19. R. M. Beam and R. F. Warming, AIAA J. 16, 393 (1978).

20. B. Van Leer and W. A. Mulder, Delft University of Technology Report
84-20, Delft, The Netherlands, 1984 (unpublished).

21. S. Obayashi and K. Kuwahara, AIAA Paper 84-1670, Snowmass, CO,
1984 (unpublished).

22. R. J. Hakkinen, I. Greber, L. Trilling, and S. S. Arbaebanel, NASA
Memo-2-18-59W, 1959 (unpublished).

23. F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974)
p. 265.

